

AQA Computer Science A-Level
4.3.4 Searching algorithms

Intermediate Notes

www.pmt.education

Specification:

4.3.4.1 Linear search:

Know and be able to trace and analyse the complexity of the linear
search algorithm. Time complexity is O(n).

4.3.4.2 Binary search

Know and be able to trace and analyse the time complexity of the
binary search algorithm. Time complexity is O(log n).

4.3.4.3 Binary tree search

Be able to trace and analyse the time complexity of the binary tree
search algorithm. Time complexity is O(log n).

www.pmt.education

Searching Algorithms
A ​searching algorithm​ is used to find a ​specified data item​ within a ​set of data​. This
could be an array, a list or even a binary tree. There are several different searching
algorithms which can be used in varying circumstances. The three studied below are
linear search ​, ​binary search ​ ​and a ​binary tree search​.

Linear Search
A linear search can be conducted on any list, even if the
data isn’t in order. It is very simple to program, but it has a
comparatively ​high time complexity​, so is rarely used in
the real world. It has one loop, and thus has a ​ ​time
complexity​ of​ ​O(N)​.

Linear search works by inspecting every item in a list ​one
by one​ until the desired item (the ​target​) is found.

If the target ​does not exist​ in the list, the algorithm will ​check every single item​ in the list
before finishing. If the algorithm has been properly programmed, this will not result in an
error.

Linear Search Example

Here is an array of people:

Position 0 1 2 3 4 5

Data Dean Angelina Oliver Seamus Cho Fred

Where is “Oliver” in the array?
The first position of the array is checked.

Position 0 1 2 3 4 5

Data Dean Angelina Oliver Seamus Cho Fred

“Oliver” ≠ “Dean”
Check the next position in the array.

www.pmt.education

Position 0 1 2 3 4 5

Data Dean Angelina Oliver Seamus Cho Fred

“Oliver” ≠ “Angelina”
So check the next position in the array

Position 0 1 2 3 4 5

Data Dean Angelina Oliver Seamus Cho Fred

“Oliver” = “Oliver”
Hence Oliver is found at position 3 in the array.

Pseudocode

The linear search algorithm could be programmed using the following pseudocode:

LinearSearch(Target, ArrayofNames)
Boolean Found
Integer Count
Found ← FALSE
Count ← 0

Do Until Found == TRUE or Count == ArrayofNames Count

If Target == ArrayofNames(Count)
Found ← TRUE

Else
Count ← Count + 1

End If
Loop

If Found = TRUE

Output Target found at Count
Else

Output Target not found
End if

www.pmt.education

Binary Search
The binary search algorithm is more efficient than the linear search algorithm, but it can
only be used on ​ordered ​lists.

A binary search works by looking at the ​midpoint ​of a list and determining if the ​target ​is
higher or lower ​than the midpoint. The time complexity is ​O(logN)​ because the list is
halved ​each search.

Binary Search Example

Here is an array of people:

Position 0 1 2 3 4 5 6

Data Charles Fredrick George Ginevra Percy Ronald William

Where is George?

The first step is to take the middle piece of data. To find
the midpoint of the data, ​add ​the ​highest position ​ and the
lowest position​ of the array being considered, and ​divide
by 2​.

For example:
0 + 6 = 6, 6 / 2 = 3. Look at position 3 of the array.

Position 0 1 2 3 4 5 6

Data Charles Fredrick George Ginevra Percy Ronald William

“George” ≠ “Ginevra”
“George” < “Ginevra” because George is before Ginevra in the list.
Hence we discard all places in the array beyond and including “Ginevra”
Our new array looks like this:

Position 0 1 2

Data Charles Fredrick George

www.pmt.education

Again, we check the middle position. 0 + 2 = 2, 2 / 2 = 1.

Position 0 1 2

Data Charles Fredrick George

“George” ≠ “Fredrick”
“George” > “Fredrick”
Hence, everything before and including “Fredrick” does not need to be checked.

Position 2

Data George

There is only one element in the array. 2 + 2 = 4, 4 / 2 = 2

Position 2

Data George

“George” = “George”
George is found at position 2 of the array.

www.pmt.education

Pseudocode
A binary search can be conducted in many different ways. Here is pseudocode for one
solution:

BinarySearch(Target, ArrayofNames)
Integer TopPointer
Integer BottomPointer
Integer Midpoint
Boolean Found

Found ← FALSE
BottomPointer ← 0
TopPointer ← ArrayofNames Count - 1

Do Until Found = TRUE or TopPointer < BottomPointer

Midpoint = int mid TopPointer, BottomPointer
If ArrayofNames(Midpoint) = Target

Found = TRUE
ElseIf ArrayofNames(Midpoint) > Target

TopPointer = Midpoint - 1
ElseIf ArrayofNames(Midpoint) < Target

BottomPointer = Midpoint + 1
End If

Loop

If Found = TRUE
Output Target found at Midpoint

Else
Output Target not found

End if

www.pmt.education

Binary Tree Search

A binary tree search is the same as a binary search,
except it is conducted on a​ ​binary tree​ rather than a list. A
tree is an type of ​connected ​graph ​that has ​no cycles​.

A binary tree is a ​rooted​,​ ordered tree ​ in which ​each node
has no more than 2 children ​. Just like the binary search
algorithm, the binary tree search algorithm has a time
complexity of ​O(logN)​.

Binary Tree Search Example

Here is a list of names:
Georg, René, Ada, Alan, Blaise, Ptolemy, Tim.

Does the list contain “Alan”?

The first stage in a binary tree search is to put the list into a​ binary tree​.

www.pmt.education

A binary tree search starts at the root.

“Alan” ≠ “Georg”
“Alan” < “Georg”
Therefore only items ​left ​of the root will be considered further.

“Alan” ≠ “Ada”
“Alan” > “Ada”
Hence only nodes ​right ​of Ada will be further considered.

www.pmt.education

“Alan” = “Alan”
So Alan is in the tree.

www.pmt.education

